Home

Research Scientist at Berkeley Lab, California.

Applied Mathematics and Computational Research Division - Department of Applied Mathematics - Scalable Solvers Group

Lawrence Berkeley National Laboratory
1 Cyclotron Road, MS 050A-3111
Berkeley, CA 94720, US

 

 

About

I am a Research Scientist in the Computational Research Division at Berkeley Lab and received my PhD in Engineering Science: Computer Science (2015) at KU Leuven from which I also hold Master degrees in Mathematical Engineering (2010) and in Archaeology (2011).

My main research fields are Applied Mathematics and Scientific Computing. My research interests range from numerical linear algebra and numerical software to quantum computing and quantum algorithms.

Research Interests

  • (Nonlinear) Eigenvalue Problems
  • Numerical Linear Algebra
  • Model Order Reduction
  • Numerical Software
  • Quantum Computing

Preprints

  1. Y. ShenN. Van BuggenhoutD. CampsK. KlymkoR. Van Beeumen
    Quantum rational transformation using linear combinations of Hamiltonian simulations
    arXiv:2408.07742, 2024
     
  2. S. DarbhaM. Kornjača, F. Liu, J. Balewski, M.R. Hirsbrunner, P. Lopes, S.-T. WangR. Van BeeumenK. KlymkoD. Camps
    Long-lived oscillations of false and true vacuum states in neutral atom systems
    arXiv:2404.12371, 2024
     
  3. S. DarbhaM. Kornjača, F. Liu, J. Balewski, M.R. Hirsbrunner, P. Lopes, S.-T. WangR. Van BeeumenD. CampsK. Klymko
    False vacuum decay and nucleation dynamics in neutral atom systems
    arXiv:2404.12360, 2024
     
  4. M.R. Hirsbrunner, J.W. MullinaxY. ShenD.B. Williams-YoungK. KlymkoR. Van BeeumenN.M. Tubman
    Diagnosing local minima and accelerating convergence of variational quantum eigensolvers with quantum subspace techniques
    arXiv:2404.06534, 2024
     
  5. Y. ShenD. Camps, S. Darbha, A. Szasz, K. Klymko, D.B. Williams-Young, N.M. TubmanR. Van Beeumen
    Estimating eigenenergies from quantum dynamics: A unified noise-resilient measurement-driven approach
    arXiv:2306.01858, 2023
     
  6. E. KökcüD. Camps, L. Bassman Oftelie, W.A. de JongR. Van Beeumen, A.F. Kemper
    Algebraic compression of free fermionic quantum circuits: Particle creation, arbitrary lattices and controlled evolution
    arXiv:2303.09538, 2023
     
  7. R. Van BeeumenD. Camps, N. Mehta
    QCLAB++: Simulating quantum circuits on GPUs
    arXiv:2303.00123, 2023

Software

Description

QCLAB

QCLAB is an object-oriented MATLAB toolbox for creating and representing quantum circuits.
https://github.com/QuantumComputingLab/qclab

Description

QCLAB++

QCLAB++ is an object-oriented, fully templated C++ package for creating and representing quantum circuits.
https://github.com/QuantumComputingLab/qclabpp

Description

F3C

Fast Free Fermion Compiler (F3C) is a MATLAB toolbox for compiling time-evolution quantum circuits of spin Hamiltonians that can be mapped to free fermions.
https://github.com/QuantumComputingLab/f3c

Description

F3C++

Fast Free Fermion Compiler (F3C++) is a C++ package for compiling time-evolution quantum circuits of spin Hamiltonians that can be mapped to free fermions.
https://github.com/QuantumComputingLab/f3cpp