Research Scientist at Berkeley Lab, California.
Applied Mathematics and Computational Research Division - Department of Applied Mathematics - Scalable Solvers Group
Lawrence Berkeley National Laboratory
1 Cyclotron Road, MS 050A-3111
Berkeley, CA 94720, US
About
I am a Research Scientist in the Computational Research Division at Berkeley Lab and received my PhD in Engineering Science: Computer Science (2015) at KU Leuven from which I also hold Master degrees in Mathematical Engineering (2010) and in Archaeology (2011).
My main research fields are Applied Mathematics and Scientific Computing. My research interests range from numerical linear algebra and numerical software to quantum computing and quantum algorithms.
Research Interests
- (Nonlinear) Eigenvalue Problems
- Numerical Linear Algebra
- Model Order Reduction
- Numerical Software
- Quantum Computing
Preprints
- Y. Shen, A. Buzali, H.-Y. Hu, K. Klymko, D. Camps, S.F. Yelin, R. Van Beeumen
Efficient measurement-driven eigenenergy estimation with classical shadows
arXiv:2409.13691, 2024
- Y. Shen, N. Van Buggenhout, D. Camps, K. Klymko, R. Van Beeumen
Quantum rational transformation using linear combinations of Hamiltonian simulations
arXiv:2408.07742, 2024
- S. Darbha, M. Kornjača, F. Liu, J. Balewski, M.R. Hirsbrunner, P. Lopes, S.-T. Wang, R. Van Beeumen, K. Klymko, D. Camps
Long-lived oscillations of false and true vacuum states in neutral atom systems
arXiv:2404.12371, 2024
- S. Darbha, M. Kornjača, F. Liu, J. Balewski, M.R. Hirsbrunner, P. Lopes, S.-T. Wang, R. Van Beeumen, D. Camps, K. Klymko
False vacuum decay and nucleation dynamics in neutral atom systems
arXiv:2404.12360, 2024
- M.R. Hirsbrunner, J.W. Mullinax, Y. Shen, D.B. Williams-Young, K. Klymko, R. Van Beeumen, N.M. Tubman
Diagnosing local minima and accelerating convergence of variational quantum eigensolvers with quantum subspace techniques
arXiv:2404.06534, 2024
- Y. Shen, D. Camps, S. Darbha, A. Szasz, K. Klymko, D.B. Williams-Young, N.M. Tubman, R. Van Beeumen
Estimating eigenenergies from quantum dynamics: A unified noise-resilient measurement-driven approach
arXiv:2306.01858, 2023
- E. Kökcü, D. Camps, L. Bassman Oftelie, W.A. de Jong, R. Van Beeumen, A.F. Kemper
Algebraic compression of free fermionic quantum circuits: Particle creation, arbitrary lattices and controlled evolution
arXiv:2303.09538, 2023
- R. Van Beeumen, D. Camps, N. Mehta
QCLAB++: Simulating quantum circuits on GPUs
arXiv:2303.00123, 2023
Software
QCLAB
QCLAB is an object-oriented MATLAB toolbox for creating and representing quantum circuits.
https://github.com/QuantumComputingLab/qclab
QCLAB++
QCLAB++ is an object-oriented, fully templated C++ package for creating and representing quantum circuits.
https://github.com/QuantumComputingLab/qclabpp
F3C
Fast Free Fermion Compiler (F3C) is a MATLAB toolbox for compiling time-evolution quantum circuits of spin Hamiltonians that can be mapped to free fermions.
https://github.com/QuantumComputingLab/f3c
F3C++
Fast Free Fermion Compiler (F3C++) is a C++ package for compiling time-evolution quantum circuits of spin Hamiltonians that can be mapped to free fermions.
https://github.com/QuantumComputingLab/f3cpp