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Computation of pseudospectral abscissa for large-scale nonlinear eigenvalue problems
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We present an algorithm to compute the pseudospectral abscissa for a nonlinear eigenvalue problem. The
algorithm relies on global under-estimator and over-estimator functions for the eigenvalue and singular
value functions involved. These global models follow from eigenvalue perturbation theory. The algorithm
has three particular features. First, it converges to the globally rightmost point of the pseudospectrum, and it
is immune to nonsmoothness. The global convergence assertion is under the assumption that a global lower
bound is available for the second derivative of a singular value function depending on one parameter. It may
not be easy to deduce such a lower bound analytically, but assigning large negative values works robustly
in practice. Second, it is applicable to large-scale problems since the dominant cost per iteration stems
from computing the smallest singular value and associated singular vectors, for which efficient iterative
solvers can be used. Furthermore, a significant increase in computational efficiency can be obtained by
subspace acceleration, that is, by restricting the domains of the linear maps associated with the matrices
involved to small but suitable subspaces, and solving the resulting reduced problems. Occasional restarts
of these subspaces further enhance the efficiency for large-scale problems. Finally, in contrast to existing
iterative approaches based on constructing low-rank perturbations and rightmost eigenvalue computations,
the algorithm relies on computing only singular values of complex matrices. Hence, the algorithm does not
require solutions of nonlinear eigenvalue problems, thereby further increasing efficiency and reliability.
This work is accompanied by a robust implementation of the algorithm that is publicly available.

Keywords: pseudospectra; nonlinear eigenvalue problem; eigenvalue perturbation theory; nonsmooth
optimization; subspace methods, global optimization.

1. Introduction

We consider nonlinear eigenvalue problems of the form

F(λ)x = 0, (1.1)

where F : Ω → Cn×n is an analytic matrix-valued function on Ω ⊆ C. The scalar λ ∈ Ω satisfying the
equation above for an x ∈ Cn \{0} is called an eigenvalue, while x is called the corresponding eigenvector.
Such eigenvalue problems when F is a matrix polynomial, especially the quadratic eigenvalue problem,
arise from various engineering applications, for instance, from applications in structural design and fluid
mechanics (Tisseur & Meerbergen, 2001). Nonpolynomial nonlinear eigenvalue problems are also of
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great interest: finite element discretizations of boundary value problems, for instance, in photonics, lead
to eigenvalue problems of the form (1.1), where F(λ) is a rational function of λ (Mehrmann & Voss, 2004;
Effenberg, 2013); delay systems in control theory necessitate nonlinear eigenvalue problems where F(λ)

involves exponentials of λ (Michiels & Niculescu, 2007). For recent progresses on the topic, we refer to
the survey paper Mehrmann & Voss (2004) and theses Effenberg (2013) and Van Beeumen (2015).

Stability of the continuous dynamical system associated with the nonlinear eigenvalue problem is
a fundamental issue. In terms of the nonlinear eigenvalue problem (1.1), this amounts to the inclusion
of all of the eigenvalues on the left half of the complex plane. However, the system is often subject
to uncertainties, and thus it is often desired that a system remains stable under small perturbations of
parameters. This is reflected in the nonlinear eigenvalue problem (1.1) as the inclusion of the eigenvalues
of the original problem as well as all perturbed problems in the left half of the complex plane. Moreover, a
stable system can still exhibit transient behavior before reaching the equilibrium eventually. For instance,
for the standard eigenvalue problem Av = λv and the associated dynamical system x′(t) = Ax(t), this
is explained by the Kreiss matrix theorem (Trefethen & Embree, 2005, Theorem 18.5). A corollary of
this theorem is that a stable system x′(t) = Ax(t) becoming unstable under small perturbations of A must
exhibit transient growth.

For robustness against uncertainties and to assess the transient behavior of solutions of a stable system,
a modern approach is the consideration of the ε-pseudospectrum of F. This is the set in the complex
plane to which the eigenvalues of F can be shifted when perturbations at a distance ε or closer are
taken into account. The ε-pseudospectral abscissa, the supremum of the real parts of the elements of
the ε-pseudospectrum, constitutes a uniform bound on the asymptotic growth rate of the solutions for
all perturbations at a distance ε or closer. Consequently, it assesses robust stability (Burke et al., 2003).
The ε-pseudospectral abscissa is also closely related to the distance to instability (Verhees et al., 2014)
and the H-infinity norm of transfer functions defined appropriately (see Zhou et al., 1996 for relations
between H-infinity norms and robust stability criteria).

A standard approach to solve polynomial eigenvalue problems is to reformulate this type of eigenvalue
problem as standard generalized linear eigenvalue problems, the so-called linearization, with the same
eigenvalues as the original polynomial (Mackey et al., 2006; Amiraslani et al., 2009). The obtained linear
eigenvalue problem can next be solved by a standard method of choice. For solving general nonlinear
eigenvalue problems (1.1), first a polynomial or rational approximation is constructed (Van Beeumen,
2015) or the nonlinear eigenvalue problem is transformed into an equivalent infinite-dimensional operator
eigenvalue problem, e.g., as for the delay eigenvalue problem (Jarlebring et al., 2010). Next, a linearization
process follows to obtain a linear eigenvalue problem whose spectrum approximates the spectrum of the
original nonlinear eigenvalue problem. For state-of-the-art general nonlinear eigenvalue solvers, we refer
to Güttel et al. (2014) and Van Beeumen et al. (2015). Here, we will not consider the unstructured
pseudospectra of a particular type of linearization. Instead, as in Tisseur & Higham (2001), Michiels &
Guglielmi (2012) and Verhees et al. (2014), we will explicitly take the structure of the original nonlinear
eigenvalue problem into account in the definition of its pseudospectra.

1.1 Formal definition

Formally, the analytic matrix-valued function F can always be expressed in the form

F(λ) =
m∑

j=0

fj(λ)Aj, (1.2)
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where Aj ∈ Cn×n, the scalar function fj : Ω → C is analytic on its entire domain Ω for j = 0, . . . , m, and
m ≤ n2 − 1. The spectrum of F given by

Λ(F) :=
{

λ ∈ C : det

(
m∑

j=0

fj(λ)Aj

)
= 0

}
, (1.3)

more specifically the spectral abscissa

α(F) := sup {�λ : λ ∈ Λ(F)} , (1.4)

is responsible for the asymptotic behavior of the associated dynamical system, yet it does not say much
about the transient behavior by itself.

To take the uncertainties and transient behavior into account, we are interested in the perturbed
eigenvalue problem (

m∑
j=0

fj(λ)(Aj + δAj)

)
x = 0. (1.5)

We quantify the distance between the original matrix-valued function (1.2) and the perturbed one in (1.5)
by introducing the norm

‖Δ‖glob :=

∥∥∥∥∥∥∥
⎡⎢⎣ w0‖δA0‖2

...
wm‖δAm‖2

⎤⎥⎦
∥∥∥∥∥∥∥
∞

, (1.6)

where Δ := (δA0, . . . , δAm) ∈ Cn×n×(m+1) for given non-negative real scalars wj (possibly ∞) for j =
0, . . . , m; equivalently we equip the vector space of analytic matrix-valued functions of the form (1.2)
with variable coefficient matrices Aj but fixed scalar functions fj with a norm.

We then define the ε-pseudospectrum of F by

Λε(F) :=
⋃

‖Δ‖glob≤ε

{
λ ∈ C : det

(
m∑

j=0

fj(λ)(Aj + δAj)

)
= 0

}
, (1.7)

and the ε-pseudospectral abscissa by

αε(F) := sup {�λ : λ ∈ Λε(F)} (1.8)

as an indicator of the robust stability of the dynamical system associated with (1.1). The following
characterization of Λε(F) was derived in Michiels et al. (2006).

Proposition 1.1 We have

Λε(F) =
{

λ ∈ C : σmin

(
m∑

j=0

fj(λ)Aj

)
≤ ε‖w(λ)‖1

}
, (1.9)

Downloaded from https://academic.oup.com/imajna/article-abstract/37/4/1831/2894467
by University of California, Berkeley user
on 27 November 2017



1834 K. MEERBERGEN ET AL.

where σmin(·) denotes the smallest singular value of its matrix argument, and

w(λ) :=
[

f0(λ)

w0
· · · fm(λ)

wm

]T

. (1.10)

Throughout the text, we assume that the portion of Λε(F) to the right-hand side of each vertical line
in the complex plane is bounded. Formally, letting

C≥δ := {z ∈ C : �z ≥ δ}

for a given δ ∈ R, it is assumed that Λε(F) ∩ C≥δ is bounded for all δ ∈ R. This assumption ensures
the well-posedness of αε(F) defined by (1.8). For a thorough discussion on this condition, we refer to
Michiels & Guglielmi (2012).

1.2 Literature

The ε-pseudospectrum for matrices, that is, when F(λ) = λI−A, has been popularized by Trefethen in the
last two decades (Trefethen & Embree, 2005). This set has found various applications in the literature in
connection with robust stability and transient behavior, for instance, to analyse the cutoff phenomenon in
Markov chains (Jónsson & Trefethen, 1998) and in stability analysis in hydrodynamics (Trefethen et al.,
1993). Its computation benefits from its singular value characterization. The most standard approaches
(Trefethen, 1999; Wright & Trefethen, 2002) are based on discretizing the complex plane and relying on
powerful tools of numerical linear algebra such as the Lanczos method and Schur factorization. Some
curve-tracing approaches have also been suggested (Brühl, 1996; Bekas & Gallopoulos, 2001).

Extensions to nonlinear eigenvalue problems have been considered throughout the last two decades.
For polynomial eigenvalue problems, the connection with the backward error of an eigenvalue has been
studied, singular value characterizations has been derived, and numerical approaches have been pro-
posed for its computation in Tisseur & Higham (2001). This has been extended to rectangular matrix
polynomials in homogeneous form in Higham & Tisseur (2002). The boundary and components of the
ε-pseudospectrum have been studied, and a curve-tracing algorithm has been proposed in the matrix
polynomial setting in Lancaster & Psarrakos (2005). More recent research has concentrated on the
nonpolynomial setting. In particular, Green & Wagenknecht (2006) concerns the computation of the
pseudospectra in the delay eigenvalue problem setting. In Michiels et al. (2006), the pseudospectra for a
general analytic matrix-valued function have been formally introduced, and singular value characteriza-
tions have been derived. This has been extended to analytic matrix-valued functions subject to structured
perturbations with multiplicative structure in Wagenknecht et al. (2008).

Particular attention has been paid to the computation of the pseudospectral abscissa. For the pseu-
dospectral abscissa of a matrix, the first globally convergent algorithm was proposed in Burke et al.
(2003). Since every iteration of this algorithm requires computing all eigenvalues of a matrix of twice the
dimensions of the original matrix, it is restricted to problems of moderate size. In Guglielmi & Overton
(2011), a locally convergent algorithm for large-scale matrices is proposed, where every iteration relies
on computing the rightmost eigenvalue of the original matrix plus a rank-one perturbation (see also
Kressner & Vandereycken, 2014 for an improvement of this algorithm based on subspace acceleration).
The algorithm of Guglielmi & Overton (2011) has been extended to nonlinear eigenvalue problems in
Michiels & Guglielmi (2012), and it has also been adopted to compute the distance to instability from
a nonlinear dynamical system in Verhees et al. (2014). In a different direction, an implicit determinant
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method is proposed to compute the distance to instability from a matrix (Freitag & Spence, 2011). This
approach is based on solutions of certain linear systems only and can be coupled with a bisection method
to compute the pseudospectral abscissa. In the next subsection, we situate the proposed algorithm with
respect to these works.

1.3 Motivation and outline

We present a globally convergent algorithm for the computation of αε(F), particularly suitable for large-
scale problems, that is, when Aj are large matrices. Three main components of the algorithm are introduced
in Mengi (2016), Mengi et al. (2014) and Kressner & Vandereycken (2014). In Mengi (2016), a locally
convergent algorithm is presented for optimizing a linear function subject to a constraint on a small-
est eigenvalue function. The algorithm is immune to the nonsmooth nature of the smallest eigenvalue
function. In Section 2, we describe how this algorithm can be adopted to compute αε(F) based on the
characterization (1.9) of Λε(F).

Unfortunately, this yields a locally rightmost point, which is possibly not rightmost globally. We
overcome this by performing a vertical search by means of the algorithm introduced in Mengi et al.
(2014) for the global optimization of a prescribed eigenvalue of a Hermitian and analytic matrix-valued
function. We fix the real part α of the locally rightmost point and perform the minimization of

σmin

(∑m
j=0 fj(α + iω)Aj

)
‖w(α + iω)‖1

, (1.11)

over all ω ∈ R globally. This global minimization assumes the availability of a global lower bound on
the second derivative of the function above with respect to α. In practice, choosing a large negative value
for this bound works robustly. If the globally minimal value is less than ε, then we repeat the local search
starting from α + iω∗, where ω∗ is a global minimizer of (1.11). We refer to Fig. 5 (in the numerical
examples section towards the end of this text) for an illustration of the interplay between the local searches
and vertical searches. In this illustration, local searches yield locally (but not globally) rightmost points
twice. In each of these two cases, a vertical search provides a point strictly inside Λε(F) whose real part
is the same as the locally rightmost point. The vertical search idea is discussed in Section 3.

Due to the fact that the computational cost is dominated by computing the smallest singular value and
corresponding singular vectors, for which fast iterative methods are amenable, the proposed algorithm
is applicable to large-scale problems. Moreover, a significant speed-up can be achieved by incorporating
a subspace restriction, whose idea is originally proposed in Kressner & Vandereycken (2014) for the
computation of the pseudospectral abscissa of a matrix. The remarkable low-rank property observed
and exploited in that paper still holds in this more general nonlinear eigenvalue setting. In particular,
there exists a one-dimensional subspace of Cn such that the ε-pseudospectral abscissa of F(λ) remains
the same when the domain of the map v → F(λ)v is restricted to this one-dimensional subspace. The
details of this subspace idea for nonlinear eigenvalue problems are worked out in Section 4. The overall
idea is to restrict the domain of v → F(λ)v to very low-dimensional subspaces of Cn and compute the
ε-pseudospectral abscissa of the resulting smaller problems by means of the locally convergent algorithm
in Mengi (2016). The vertical searches are performed on the original F(λ). This is justified by the rare
need for these vertical searches.

One genuine aspect of the algorithm is an occasional restart strategy for the subspaces as argued in
Section 5. Since the essential task is to determine or capture a one-dimensional subspace, the algorithm
erases the old subspaces occasionally. Thus after a vertical search, if a further application of the local
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algorithm is deemed to be necessary, the algorithm starts with a one-dimensional subspace from scratch.
Moreover, when the dimension of the subspace becomes large enough (still considerably smaller than n),
the algorithm keeps only the last-added one-dimensional subspace, discarding the rest.

The overall framework is outlined in Algorithm 4. This algorithm features favorable properties over
exisiting algorithms, for instance Michiels & Guglielmi (2012). Specifially, (i) it converges globally rather
than locally (provided a sufficiently small global lower bound for the second derivative of the singular
value function in (1.11) is chosen); (ii) it is immune to nonsmoothness, that is, even if αε(F) is attained at
a point say z∗ ∈ C where σmin (F(z∗)) is not simple, it still converges; (iii) it handles large-scale problems
well (the subspace method coupled with the restart strategy contributes to this largely, but the restarts
would not be as effective without vertical searches that are performed globally); (iv) in contrast to the
approach of Michiels & Guglielmi (2012), the algorithm does not rely on a nonlinear eigenvalue solver
(provided it is initialized with the rightmost eigenvalue): instead of the rightmost eigenvalue of perturbed
nonlinear eigenvalue problems, it is based on the repeated computation of the smallest singular value of
complex matrices. Robust and efficient numerical algorithms are available, e.g., the implicitly restarted
Arnoldi method of Lehoucq et al. (1998), for the smallest singular value.

2. Determination of locally rightmost points

Due to Proposition 1.9, the ε-pseudospectral abscissa of F can be cast as the following constrained
eigenvalue optimization problem:

maximize
z∈C

Rz

subject to λ(�z,�z) := λmin

[
F(�z,�z)∗F(�z,�z)

]− ε2‖w(�z,�z)‖2
1 ≤ 0, (2.1)

where we view the matrix-valued function in (1.2) as F : R2 → Cn×n and the weight function in (1.10)
as w : R2 → R, by associating R2 with C. Throughout the text, to ease the notation, F(·), λ(·), w(·) and
fj(·), j = 0, . . . , m represent both the functions from C and the functions from R2. The functions with one
parameter or supplied with a particular point in C as the argument correspond to the ones with domain
C, and the functions with two parameters or supplied with a point in R2 as the argument have domain
R2. Furthermore, in (2.1) and in what follows, the notation λmin [·] and λmax [·] represents the smallest
eigenvalue and the largest eigenvalue of the matrix argument, respectively.

An approach to maximize a linear objective subject to a smallest eigenvalue constraint was suggested
in Mengi (2016). Below, we describe how this approach can be extended to deal with (2.1), in particular
the additional nonsmoothness due to ‖w(�z,�z)‖2

1, that occurs whenever fj(�z,�z) = 0 for some j ∈
{0, . . . , m}. The extension relies on the global over-estimators for λ(·) of the form specified in Theorem
2.1 below. These global over-estimators are defined in terms of global bounds γλ and γw satisfying

λmax

{∇2λmin

[
F(�z,�z)∗F(�z,�z)

]} ≤ γλ (2.2)

for all z ∈ C where σmin [F(�z,�z)] is simple, and

‖∇2
[‖w(�z,�z)‖2

1

] ‖2 ≤ γw (2.3)

for all z ∈ C, respectively, where fj(�z,�z) �= 0 for each j, more specifically, in terms of γh := γλ+ε2γw.
Analytical deduction of such bounds is discussed in Section 2.1 below.
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Theorem 2.1 Suppose zk = (zk1, zk2) ∈ R2 is a point such that σmin [F(zk)] is simple, and fj(zk) �= 0 for
each j. We have

λ(�z,�z) ≤ qk(�z,�z) := λk + ∇λT
k ((�z,�z)− zk)+ γh

2
‖(�z,�z)− zk‖2

2 ∀z ∈ C,

where λk := λ(zk1, zk2) and ∇λk := ∇λ(zk1, zk2).

The proof of Theorem 2.1 is in essence identical to the proof of Mengi (2016, Theorem 2.2), but λ(·)
here takes the role of λmin(·) there. In this direction, we note the following:

• The function φ(α) = λ((�z,�z)+ αp) for a given p ∈ R2 is the minimum of finitely many analytic
functions, namely

φj,s0,...,sm(α) := φj(α)− ε2 {s0f0((�z,�z)+ αp)+ · · · + smfm((�z,�z)+ αp)}2

for j = 1, . . . , n, s0 = −1, 1, . . . , sm = −1, 1. Here, φ1(α), . . . , φn(α) represent the eigenvalues of
F((�z,�z)+ αp)∗F((�z,�z)+ αp) ordered so that each φj(α) is analytic.

• The left-derivative φ′−(α) and the right-derivative φ′+(α) exist everywhere and satisfy φ′−(α) ≥ φ′+(α)

at all α, since φ(α) is the minimum of finitely many analytic functions.

• Furthermore, φ(α) is analytic everywhere excluding finitely many points in a finite interval for the
very same reason that it is the minimum of finitely many analytic functions.

• Finally, γh is such that

λmax

[∇2λ(�z,�z)
] ≤ λmax

{∇2λmin

[
F(�z,�z)∗F(�z,�z)

]}+ λmax

{∇2
[−ε2‖w(�z,�z)‖2

1

]}
≤ λmax

{∇2λmin

[
F(�z,�z)∗F(�z,�z)

]}+ ε2
∥∥∇2

[‖w(�z,�z)‖2
1

]∥∥
2

≤ γλ + ε2γw = γh

for all z ∈ C such that λ(�z,�z) is twice differentiable.

Replacing the eigenvalue constraint in (2.1) with the over-estimator of Theorem 2.1 results in the
following convex and smooth problem:

maximize
(α,β)∈R2

α

subject to λk + ∇λT
k ((α, β)− zk)+ γh

2
‖(α, β)− zk‖2

2 ≤ 0. (2.4)

The algorithm generates a sequence {zk} in R2 such that zk+1 is the maximizer of (2.4) given zk . Since the
feasible set of (2.4) (a disk) is a subset of the feasible set of the original problem (2.1), each zk remains
feasible with respect to the original problem provided z0 is feasible. By applying the first-order optimality
conditions to (2.4), two consecutive iterates in the sequence {zk} are tied by the recurrence

zk+1 = zk + 1

γh

[
1

μ+
· (1, 0)− ∇λk

]
, where μ+ = 1√‖∇λk‖2

2 − 2γhλk

, (2.5)
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∇λk =
⎡⎢⎣ Real

(
v∗k

∂F(zk )∗
∂�z F(zk)vk + v∗k F(zk)

∗ ∂F(zk )

∂�z vk

)
− 2ε2‖w(zk)‖1

∂‖w(zk )‖1
∂�z

Real
(

v∗k
∂F(zk )∗

∂�z F(zk)vk + v∗k F(zk)
∗ ∂F(zk )

∂�z vk

)
− 2ε2‖w(zk)‖1

∂‖w(zk )‖1
∂�z

⎤⎥⎦,

∂‖w(zk)‖1

∂�z
=

m∑
j=0

1

wj

∂
∣∣fj(zk)

∣∣
∂�z

,
∂‖w(zk)‖1

∂�z
=

m∑
j=0

1

wj

∂
∣∣fj(zk)

∣∣
∂�z

,

and vk ∈ Cn is a unit right-singular vector corresponding to σmin [F(zk)]. Here, we benefit from the
analytical formulas for the derivatives of eigenvalue functions (Lancaster, 1964), in particular to cal-
culate the derivatives of λmin [F(�z,�z)∗F(�z,�z)]. Recurrence (2.5) holds under the assumption that
∇qk(zk+1) �= 0. The condition ∇qk(zk+1) = 0 is rather unlikely, and it occurs only if ∇λk = 0 and λk = 0
(see Mengi, 2016, Theorem 2.3).

2.1 Upper bounds on second derivatives

In this section, we present bounds γλ and γw satisfying (2.2) and (2.3), respectively. An application of
Mengi (2016, Theorem 6.1) yields

λmax

{∇2λmin

[
F(�z,�z)∗F(�z,�z)

]} ≤ λmax

{∇2
[
F(�z,�z)∗F(�z,�z)

]}
(2.6)

for z ∈ C such that σmin [F(z)] is simple, where

∇2
[
F(�z,�z)∗F(�z,�z)

]
:=

⎡⎢⎣ ∂2[F(�z,�z)∗F(�z,�z)]
∂�z2

∂2[F(�z,�z)∗F(�z,�z)]
∂�z·∂�z

∂2[F(�z,�z)∗F(�z,�z)]
∂�z·∂�z

∂2[F(�z,�z)∗F(�z,�z)]
∂�z2

⎤⎥⎦.

Above, ∂2 [F(�z,�z)∗F(�z,�z)] /∂�z2 denotes the second derivative of the matrix-valued function
F(�z,�z)∗F(�z,�z) with respect to �z and is an n × n matrix obtained from F(�z,�z)∗F(�z,�z)
by differentiating each of its entries with respect to �z twice. The other second derivatives of
F(�z,�z)∗F(�z,�z) above are defined similarly.

For the standard ε-pseudospectral abscissa of a matrix A, that is, when F(z) = A − zI , we
have ∇2 [F(�z,�z)∗F(�z,�z)] = 2I . Consequently, inequality (2.6) leads to the upper bound
λmax

{∇2λmin [F(�z,�z)∗F(�z,�z)]
} ≤ 2 for all z ∈ C such that σmin [F(z)] is simple. In the general

nonlinear setting (1.2), routine calculations yield

∇2
[
F(�z,�z)∗F(�z,�z)

] = m∑
k=0

m∑
j=0

[
Fk,j(�z,�z)+ Fj,k(�z,�z)

]
⊗ A∗kAj,

where

Fj,k(�z,�z) := ∇2fk(�z,�z) · fj(�z,�z)+ ∇fk(�z,�z) · ∇fj(�z,�z)T

= f
′′

k (z)fj(z)

[
1 −i
−i −1

]
+ f ′k (z)f

′
j (z)

[
1 i
−i 1

]
, (2.7)
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and ⊗ denotes the Kronecker product. Above, f ′k (z), f ′′k (z) represent first, second complex derivatives of
fk(z), thus functions from Ω ⊆ C to C. From here, by employing (2.6) and exploiting

Fk,j(�z,�z)+ Fj,k(�z,�z) =
[
Fj,k(�z,�z)+ Fk,j(�z,�z)

]∗
,

we deduce the following bound.

Theorem 2.2 Suppose that z ∈ C is such that σmin [F(z)] is simple. The following holds:

λmax

{∇2λmin

[
F(�z,�z)∗F(�z,�z)

]} ≤ 2 ·
m∑

k=0

m∑
j=0

‖Fk,j(�z,�z)‖2 · ‖A∗kAj‖2.

Example 2.3 (Polynomial Eigenvalue Problem) Consider F(z) =∑m
j=0 zjAj for given matrices Aj ∈ Cn×n

for j = 0, . . . , m. Noting that fj(z) = zj, Theorem 2.2 combined with expression (2.7) for Fj,k(�z,�z)
implies

λmax

{∇2λmin

[
F(�z,�z)∗F(�z,�z)

]} ≤
4 ·
[

m∑
k=0

m∑
j=2

j · (j − 1) · |z|j+k−2‖A∗kAj‖2 +
m∑

k=1

m∑
j=1

k · j · |z|j+k−2‖A∗kAj‖2

]
.

Assuming that the ε-pseudospectrum of F is bounded and contained inside a ball of radius δ in the
complex plane and letting a := maxj=0,...,m ‖Aj‖2 , we can set

γλ := 4a2 ·
⎡⎣(δm+1 − 1

δ − 1

)(
δm+1 − 1

δ − 1

)′′
+
({

δm+1 − 1

δ − 1

}′)2
⎤⎦,

where the derivatives are with respect to δ. Similarly, bounds can also be derived for delay and rational
eigenvalue problems based on Theorem 2.2.

The following bound is the consequence of rudimentary calculations.

Theorem 2.4 Suppose z ∈ C is such that fj(z) �= 0 for j = 0, . . . , m. The following holds:

∥∥∇2
[‖w(�z,�z)‖2

1

]∥∥
2 ≤ 2 ·

⎡⎣ m∑
j=0

1

wj
|f ′j (z)|

⎤⎦2

+ 2 ·
⎡⎣ m∑

j=0

1

wj
|fj(z)|

⎤⎦ ·
⎡⎣ m∑

j=0

1

wj

{
3 · |f

′
j (z)|2
|fj(z)| + |f

′′
j (z)|

}⎤⎦.

For instance, for the matrix polynomial F(z) =∑m
j=0 zjAj with fj(z) = zj, Theorem 2.4 gives rise to the

bound

∥∥∇2
[‖w(�z,�z)‖2

1

]∥∥
2 ≤ 2 ·

⎡⎣ m∑
j=1

j · |z|j−1

wj

⎤⎦2

+ 2 ·
⎡⎣ m∑

j=0

|z|j
wj

⎤⎦ ·
⎡⎣ m∑

j=1

3j2 · |z|j−2

wj
+

m∑
j=2

j · (j − 1) · |z|j−2

wj

⎤⎦.
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If the ε-pseudospectral abscissa of F is contained inside the ball of radius δ and w := minj=0,...,m wj, we
can choose

γw := 2

w2
·
⎡⎣({δm+1 − 1

δ − 1

}′)2

+
(

δm+1 − 1

δ − 1

)(
3

δ
+ 4

{
δm+1 − 1

δ − 1

}′′
+ 3

{
δm+1 − 1

δ − 1

}′)⎤⎦.

2.2 Convergence

Let us denote the components of zk ∈ R2 with zk1 and zk2. We call C(zk) := zk1+ izk2 the complexification
of zk . The sequence {zk1} is monotone increasing. This is because zk+1 is chosen among all (�z,�z)
satisfying qk(�z,�z) ≤ 0 such that �z is as large as possible and, in particular, zk satisfies qk(zk) = 0.
Additionally, since it is assumed that Λε(F)∩C≥δ is bounded for all δ ∈ R, the sequence {zk1} is bounded
above. This would imply the convergence of {zk1} as stated next.

Theorem 2.5 Suppose that Λε(F) ∩C≥δ is bounded for all δ ∈ R, σmin [F(zk)] is simple for each k, and
fj(zk) �= 0 for each j, k. Then the sequence {zk1} is convergent.

The boundedness of Λε(F) ∩ C≥δ for all δ ∈ R, rather than the boundedness of Λε(F), is also sufficient
for the convergence of the sequence {zk} to a desired point, provided ‖∇λk‖2 remains bounded away from
zero.

Theorem 2.6 (Convergence) Suppose that Λε(F) ∩C≥δ is bounded for all δ ∈ R, σmin [F(zk)] is simple
for each k, and fj(zk) �= 0 for each j, k.

(i) If ∇λk �= 0 for each k sufficiently large, then λk → 0 as k→∞.

(ii) If there exists a real scalar L > 0 such that ‖∇λk‖2 > L for each k sufficiently large, then

(1, 0) · ∇λk

‖∇λk‖2
→ 1 as k→∞.

The proofs of parts (i) and (ii) are similar to the proofs of Mengi (2016, Lemma 3.5, Theorem 3.6). Part
(i) means that C(zk) approaches the boundary of Λε(F) as k→∞. Moreover, part (ii) amounts to∇λ(zk)

pointing in the direction of (1, 0) as k → ∞. Thus, eventually C(zk) becomes aligned with the points
on the boundary of Λε(F) with the vertical tangent line. The assertions of Theorem 2.6 amount to the
satisfaction of the first-order optimality conditions by the sequence {zk} in the smooth and nonsmooth
sense, that is, regardless of the multiplicity of σmin [F(z∗)] whenever the limit z∗ = limk→∞ zk exists.
Formally, the first-order optimality conditions for (2.1) are given by

∃μ > 0 s.t. (1, 0) ∈ μ · ∂λ(�z,�z) and λ(�z,�z) = 0,

where the generalized gradient ∂λ(�z,�z) is defined by (Clarke, 1990, page 11)

∂λ(�z,�z) := Co
{

lim
k→∞
∇λ(z̃k)

∣∣∣ z̃k → (�z,�z), z̃k /∈ Ω
}

, (2.8)
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the set Ω is a subset of R2 (of measure zero) on which λ is not differentiable and Co(H) denotes the
convex hull of the set H. The property λ(z∗) = 0 is immediate from part (i) of Theorem 2.6. Additionally,
part (ii) of Theorem 2.6 implies

(1, 0) = lim
k→∞

∇λ(zk)

‖∇λ(zk)‖2
∈ μ∗ · ∂λ(z∗),

where μ∗ := 1/ limk→∞ ‖∇λ(zk)‖2, amounting to the satisfaction of the first-order optimality conditions.
The assumptions of Theorem 2.6 that fj(zk) �= 0 and σmin [F(zk)] is simple are satisfied generically.

The set of points z where fj(z) vanish, or σmin [F(z)] is not simple is a subset of Ω of measure zero.
The algorithm never encounters such points in practice. It can generate points close to such points
of nonsmoothess, but this has no effect on the convergence of the algorithm. On the other hand, the
nonsmoothness at an optimal point has a different nature. Smooth algorithms may not converge to such
points. But the algorithm here converges to optimal points regardless of whether they are smooth.

We conclude this section with a description of the algorithm below. This description is given in the
more general rectangular setting, when F : Ω → Cn×p is analytic on Ω . The ε-pseudospectrum can
be defined for a rectangular analytic matrix-valued function in a similar fashion by (1.9). The algorithm
extends without any modification to this rectangular setting. Throughout this text, in the descriptions of
the algorithms, we state the termination criteria in exact terms to keep the descriptions neat. Obviously,
numerical implementations would require the satisfaction of these conditions up to specified tolerances.

Algorithm 1 Local search

Require: A matrix-valued function F : Ω → Cn×p analytic on Ω and a positive scalar ε ∈ R.
1. z0 ← (�zR,�zR), where zR is any point in Λε(F) and k← 0.
2. Calculate σ0 := σmin[F(z0)] and an associated unit right-singular vector v0.
3. Calculate λ0,∇λ0 using σ0, v0, z0.
4. while (λk �= 0) or (∇λk �= c · (1, 0) ∀ c ∈ R+) do
5. Apply the recurrence (2.5) to find zk+1 given zk , λk ,∇λk .
6. Calculate σk+1 := σmin[F(zk+1)] and an associated unit right-singular vector vk+1.
7. Calculate λk+1,∇λk+1 using σk+1, vk+1, zk+1.
8. Increment k.
9. end while

10. Output: zk .

3. Vertical search

It is essential that C(z0) ∈ Λε(F) for the locally convergent algorithm of the previous section. In this
section, we further impose C(z0) to be the rightmost eigenvalue of F(λ). This turns out to be essential for
global convergence. The sequence {zk} defined by the update rule (2.5), when it converges, yields a point
z∗ = (α∗, β∗) such that

(1) C(z∗) is on the boundary of Λε(F) with vertical tangent line, or

(2) 0 ∈ ∂λ(z∗).

Downloaded from https://academic.oup.com/imajna/article-abstract/37/4/1831/2894467
by University of California, Berkeley user
on 27 November 2017



1842 K. MEERBERGEN ET AL.

Recall that ∂λ(z∗) denotes the generalized gradient of λ at z∗ defined by (2.8). Case (2) can occur after
finitely many iterations if it happens that λk = 0 and ∇λk = 0 for some k. In this case, z� = zk for each
� > k due to the fact that zk+1 is the local maximizer of (2.4). In the more probable infinite convergence
case, unless 0 ∈ ∂λ(z∗), the point C(z∗) must be on the boundary of Λε(F) with a vertical tangent line by
Theorem 2.6.

The point C(z∗) may or may not be a rightmost point globally in Λε(F). To check whether C(z∗) is
indeed a rightmost point globally in Λε(F), we globally minimize

σ(α∗, ω) := σmin [F(α∗, ω)]

‖w(α∗, ω)‖1
, (3.1)

over all ω ∈ R, which we call a vertical search. This global minimization is achieved by means of the
algorithm in Mengi et al. (2014) for the optimization of a prescribed eigenvalue of a Hermitian and
analytic matrix-valued function. If the globally smallest value of σ(α∗, ω) is ε, then C(z∗) is indeed
a rightmost point of Λε(F) globally. We draw this conclusion based on the assumption that z0 is the
rightmost eigenvalue of F and by the fact that each connected component of Λε(F) must contain an
eigenvalue. If the globally minimal value of σ(α∗, ω) is strictly less than ε, then we repeat the locally
convergent algorithm of the previous section starting from (α∗, ω∗), where ω∗ is the computed global
minimizer of σ(α∗, ω). The point C(α∗, ω∗) lies strictly inside Λε(F).

Figure 5 illustrates this vertical search idea combined with the local search of the previous section
on a nonlinear delay eigenvalue problem. (Note that the approach in this figure also benefits from the
subspace idea, described in detail in the next section.) In this example, the local search converges to a
locally rightmost point (α∗, ω∗) initially. A vertical search determines that there are points with real part
equal to α∗ that lie strictly inside the ε-pseudospectrum. Such a point is given by (α∗, ω∗∗) where ω∗∗ is the
global minimizer of σ(α∗, ω) over ω. Thus, the local search is resumed from (α∗, ω∗∗). The local search
again leads to a locally rightmost point, which is followed by another vertical search. A third application
of the local search ends up at a point that is globally rightmost. This globally rightmost assertion is drawn
by a final vertical search. It is determined in this final vertical search that the smallest value of the singular
value function σ(·) along the dashed vertical line is ε.

The algorithm in Mengi et al. (2014) to minimize σ(α∗, ω) constructs piecewise quadratic functions
of the form

Qk(ω) := max
�=0,...,k

q�(ω) where q�(ω) := σ(α∗, ω�)+ ∂σ(α∗, ω�)

∂ω
(ω − ω�)− γ

2
(ω − ω�)

2

and γ is required to satisfy ∂2σ(α∗, ω)/∂ω2 ≥ γ for all ω such that σ(α∗, ω) is differentiable. This
function is constructed so as to satisfy σ(α∗, ω) ≥ Qk(ω) for all ω and σ(α∗, ω�) = Qk(ω�), as well
as ∂σ(α∗, ω�)/∂ω = Q′k(ω�) for � = 0, . . . , k. The overall algorithm generates the sequence {ωk} for a
given ω0 such that ωk+1 := arg minω Qk(ω). Every convergent subsequence of this sequence is shown to
converge to a global minimizer of σ(α∗, ω) in Mengi et al. (2014). Thus the algorithm makes use of the
derivative

∂σ(α∗, ω)

∂ω
= 1

‖w(α∗, ω)‖1
· �

(
u∗

∂F(α∗, ω)

∂ω
v

)
− 1

‖w(α∗, ω)‖2
1

· ∂‖w(α∗, ω)‖1

∂ω
· σmin [F(α∗, ω)]

where u, v represent a consistent pair of unit left- and unit right-singular vectors associated with
σmin [F(α∗, ω)], whenever σmin [F(α∗, ω)] is simple and fj(α∗, ω) �= 0 for each j ∈ {0, . . . , m}. Unlike
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the previous section, which offered analytical means to choose γλ and γw, analytical determination of the
lower bound γ on the second derivatives of σ(α∗, ω) does not seem easy. The additional difficulty is due
to a lower bound sought, rather than an upper bound, on the second derivatives of a smallest eigenvalue
function. In practice, assigning a large negative real value to γ works robustly. A numerical example is
given at the end of Section 6.3 to illustrate the effect of the choice of γ on the number of iterations of
this algorithm for vertical searches.

In special cases, it may be possible to adapt the level set approach proposed to minimize σmin(A− iωI)
over ω ∈ R in Byers (1988) and its quadratically convergent variants Boyd & Balakrishnan (1990) and
Bruinsma & Steinbuch (1990) for the minimization of σ(α∗, ω) as in (3.1). But the applicability of these
approaches depends on the particular form of F(z), in particular the scalar functions fj(z). For the standard
eigenvalue problem (i.e., when F(z) = A− zI) and the polynomial eigenvalue problem, such approaches
would require the solution of the eigenvalue problems of the same kind but twice the size of the original
problem. For the delay eigenvalue problem, this would give rise to a nonlinear eigenvalue problem of
twice the original dimension involving positive and negative powers of exp(λ); see Michiels & Gumussoy
(2010) where the level set approach is fully worked out for the problem of the H∞ norm computation.

A description of the vertical search combined with the local search is given in Algorithm 2 below.
This yields a globally convergent algorithm to compute αε(F). Vertical searches also apply regardless of
whether F is a square or a rectangular matrix-valued function.

Algorithm 2 Computation of ε-pseudospectral abscissa for matrix-valued functions

Require: A matrix-valued function F : Ω → Cn×p analytic on Ω and a positive scalar ε ∈ R.
1. z0 ← (�zR,�zR), where zR is a rightmost eigenvalue of F.
2. Convergence← False.
3. while ¬Convergence do
4. Local search: Apply Algorithm 1 starting from z0 to find z∗ = (α∗, β∗) such that C(z∗) ∈ ∂Λε(F)

with a vertical tangent line (or 0 ∈ ∂λ(z∗)).
5. Vertical search: ω∗ ← arg minω∈R σ(α∗, ω) and σ∗ ← σ(α∗, ω∗).
6. if σ∗ = ε then
7. Convergence← True.
8. else
9. z0 ← (α∗, ω∗).

10. end if
11. end while
12. Output: z∗.

4. Subspace methods

To cope with large-scale problems, we consider the map v → F(λ)v when its domain is restricted to
a subspace S of Cn. Let S be an isometry (i.e., S is a matrix with more rows than columns satisfying
S∗S = I) whose columns form an orthonormal basis for S. The matrix representation of the linear map
acting on S with respect to this basis becomes

FS(λ) := F(λ)S =
m∑

j=0

fj(λ)AjS.
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Such a subspace idea is introduced in Kressner & Vandereycken (2014) for the computation of the ε-
pseudospectral abscissa of a matrix, that is, when F(λ) = λI−A. Here we extend it to the general setting
when F(λ) is an analytic matrix-valued function of the form (1.2). In this section, we use the following
definitions of the ε-pseudospectrum and the ε-pseudospectral abscissa of FS:

Λε(FS) :=
{

λ ∈ C : σmin

(
m∑

j=0

fj(λ)AjS

)
≤ ε‖w(λ)‖1

}
and

αε(FS) := sup
{
�λ : λ ∈ Λε(FS)

}
.

This terminology and notation is slightly illusive. Indeed, the set Λε(FS) and the quantity αε(FS) are
intrinsic to the underlying linear map acting on S and independent of the choice of the orthonormal
basis (given by the columns of S) for S. We pursue them in order to remain consistent with the previous
sections.

Theorem 4.3 below shows the existence of small subspaces S such that αε(F) = αε(FS), where the
columns of the matrix S form an orthonormal basis for S. The notation V(z) is used in this result for
the set consisting of right-singular vectors corresponding to σmin [F(z)] for a given z ∈ C. Additionally,
Col(S) represents the column space of the matrix S. Lemma 4.1 below concerning the monotonicity of
Λε(FS) with respect to Col(S) is a generalization of Kressner & Vandereycken (2014, Lemma 3.1), which
specifically addresses the matrix case. Theorem 4.3 generalizes Kressner & Vandereycken (2014, Lemma
3.2), similarly, from the matrix setting to the nonlinear eigenvalue setting.

Lemma 4.1 (Monotonicity) Two isometries S1, S2 such that Col(S1) ⊆ Col(S2) satisfy

(1) Λε(FS1) ⊆ Λε(FS2) and (2) αε(FS1) ≤ αε(FS2).

Proof. Let Sj := Col(Sj) for j = 1, 2. Suppose z ∈ Λε(FS1), that is,

σmin

(
m∑

j=0

fj(z)AjS1

)
≤ ε‖w(z)‖1 (4.1)

holds. Notice that

σmin

(
m∑

j=0

fj(z)AjS1

)
= min

v∈S1,‖v‖2=1

∥∥∥∥∥
m∑

j=0

fj(z)Ajv

∥∥∥∥∥
2

≥ min
v∈S2,‖v‖2=1

∥∥∥∥∥
m∑

j=0

fj(z)Ajv

∥∥∥∥∥
2

= σmin

(
m∑

j=0

fj(z)AjS2

)
,

where the inequality is due to S1 ⊆ S2. Combining this with inequality (4.1), we deduce that z ∈ Λε(FS2)

proving (1). Furthermore, (2) is an immediate consequence of (1). �

Lemma 4.2 For z ∈ Λε(F) and a unit right-singular vector v associated with σmin [F(z)], we have
z ∈ Λε(Fv).
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Proof. This is immediate from

ε‖w(z)‖1 ≥ σmin

(
m∑

j=0

fj(z)Aj

)
=
∥∥∥∥∥

m∑
j=0

fj(z)Ajv

∥∥∥∥∥
2

= σmin

(
m∑

j=0

fj(z)Ajv

)
. �

Theorem 4.3 (Low dimensionality) Suppose that S is an isometry. Then αε(F) = αε(FS) if and only if
V(z∗) ∩ Col(S) �= ∅ for some globally rightmost point z∗ of Λε(F).

Proof. First observe that αε(F) = αε(Fv∗) for any unit right-singular vector v∗ associated with
σmin [F(z∗)]. This is due to αε(F) ≥ αε(Fv∗) by Lemma 4.1, as well as Lemma 4.2, which implies
z∗ ∈ Λε(Fv∗), so αε(F) = �z∗ ≤ αε(Fv∗).

Suppose V(z∗) ∩ Col(S) �= ∅ for some globally rightmost point z∗ of Λε(F). Consider any v∗ ∈
V(z∗)∩Col(S), which we assume to be a unit vector without loss of generality. We have span{v∗} ⊆ Col(S),
so by Lemma 4.1, we obtain

αε(Fv∗) ≤ αε(FS) ≤ αε(F).

Thus the equality αε(Fv∗) = αε(F) leads us to αε(FS) = αε(F).
To prove the converse, suppose αε(F) = αε(FS). Denote a globally rightmost point of Λε(FS) with

zS. Due to Lemma 4.1, we have zS ∈ Λε(F) and �zS = αε(FS) = αε(F), so zS is also a rightmost point
of Λε(F) globally. Furthermore, letting vS be a unit right-singular vector associated with σmin [FS(zS)],
observe ∥∥∥∥∥

m∑
j=0

fj(zS)AjSvS

∥∥∥∥∥
2

= σmin [FS(zS)] = σmin [F(zS)].

Thus SvS is a unit right-singular vector associated with σmin [F(zS)], that is,V(zS)∩Col(S) �= ∅, completing
the proof. �

Theorem 4.3 gives the initiative to work on an n × p matrix-valued function FS for p � n and for a
properly chosen subspace S = Col(S) (rather than working on the full n× n matrix-valued function F).
A natural choice for S appears to be the span of right-singular vectors of σmin [F(z)] for various z ∈ C
close to globally rightmost points of Λε(F). The following observations lead us to this choice: (i) the
right-singular vectors of σmin [F(z)] are continuous w.r.t. z: if z ≈ z∗, then V(z) ≈ V(z∗); (ii) αε(FS)

is continuous w.r.t. Col(S): if Col(S) ≈ Col(S∗) for any isometry S∗ such that Col(S∗) ∩ V(z∗) �= ∅,
then αε(FS) ≈ αε(FS∗) = αε(F). Initially, we could consider the rightmost eigenvalue zR of F as a
good approximation for the globally rightmost point of Λε(F) (this is especially true for ε ≈ 0). Setting
z0 := zR, we could then generate a sequence {zk} in C such that

Framework 1 (Subspace selection based on smallest singular value)
(1) Sk is an isometry s.t. its columns form an orthonormal basis for Sk := span{v0, . . . , vk},

where vj is a right-singular vector corresponding to σmin

[
F(zj)

]
,

(2) zk+1 is a rightmost point of Λε(FSk ),

for k ∈ N.
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Remark 4.4 There is a natural alternative to this way of choosing subspaces. Theorem 4.3 could be
interpreted in terms of eigenvectors corresponding to rightmost eigenvalues of perturbed matrix-valued
functions F + Δ. In Michiels & Guglielmi (2012, Proposition 3.1), it is shown that each z ∈ C on the
boundary of Λε(F) is an eigenvalue of

(F +Δz)(λ) :=
m∑

j=0

fj(λ)(Aj + δAz,j) where δAz,j := − ε · fj(z)

wj · |fj(z)|uv∗,

and u, v are consistent unit left-, unit right-singular vectors corresponding to σmin [F(z)]. Indeed, u, v
are left, right eigenvectors associated with the eigenvalue z of F + Δz. Furthermore, if z∗ is a globally
rightmost point of Λε(F), then it is a rightmost eigenvalue of F+Δz∗ . Thus, V(z∗) in Theorem 4.3 could
be interpreted as the set of all eigenvectors associated with a rightmost eigenvalue of F + Δz∗ . These
observations suggest forming the subspace S from eigenvectors associated with a rightmost eigenvalue
of F + Δz for various z close to globally rightmost points of Λε(F). Setting z0 := zR the rightmost
eigenvalue of F, an alternative sequence {zk} in C is defined by

Alternative framework for subspace selection
(1) Sk is an isometry s.t. its columns form an orthonormal basis for Sk := span{v0, . . . , vk},

where vj is an eigenvector associated with a rightmost eigenvalue of F +Δzj ,
(2) zk+1 is a rightmost point of Λε(FSk ),

for k ∈ N. Note that the alternative framework above requires the solution of a nonlinear eigenvalue
problem in every iteration, whereas Framework 1 involves only standard singular value problems. Fur-
thermore, numerical estimation of the rightmost eigenvalue of a nonlinear eigenvalue problem is, in
general, harder than that of the smallest singular value of a matrix. Thus, we abandon this alternative
framework, rather we adopt Framework 1 based on standard smallest singular value computations.

Below, we illustrate how the subspace idea can be put in use for large-scale F by coupling Framework
1 above with Algorithm 1 of Section 2. This results in Algorithm 3, which returns a locally rightmost point
of Λε(F). Approaches other than Algorithm 1 of Section 2 can be employed at the local search stage on
line 5 to determine a point on the boundary of Λε(FSk ) with vertical tangent line. For instance, it is possible
to adopt the approach of Michiels & Guglielmi (2012), which would require the rightmost eigenvalues
of rank-one perturbations of the original matrix-valued function. As mentioned above, the numerical
computation of a rightmost nonlinear eigenvalue is usually harder than the computation of a smallest
singular value, on which Algorithm 1 is based. Consequently, we rely on Algorithm 1 for this local search.
In the description of this algorithm, we adopt the notation σ(�z,�z) := σmin [F(�z,�z)] /‖w(�z,�z)‖1.
We disregard the possibility that the local search (on line 5) converges to a point where the generalized
gradient of λ (associated with FSk ) contains zero, which is extremely unlikely. Such an unlikely case
can be dealt with, for instance, by occasional vertical searches at additional cost. Furthermore, when
σ(zk+1) = ε holds, the condition c · (1, 0) ∈ ∂σ(zk+1) ∃ c ∈ R+ on line 6 (recall that ∂σ(zk+1) represents
the generalized gradient of σ at zk+1) amounts to having a vertical tangent line on the boundary of Λε(F)

at zk+1 in the nonsmooth sense. In the smooth case, when σ(zk+1) is simple, this condition reduces to
∇σ(zk+1) = c · (1, 0) ∃ c ∈ R+.
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Algorithm 3 Large-scale local search

Require: A matrix-valued function F : Ω → Cn×n analytic on Ω and a positive scalar ε ∈ R.
1. z0 ← a rightmost eigenvalue of F and k← 0.
2. S0 ← span{v0}, where v0 is a right-singular vector associated with σmin [F(z0)].
3. Convergence← False.
4. while ¬Convergence do
5. Local search: Apply Algorithm 1 to find zk+1 = (α∗, β∗) such that C(zk+1) ∈ ∂Λε(FSk ) with a

vertical tangent line.
6. if (σ(zk+1) = ε) and (c · (1, 0) ∈ ∂σ(zk+1) ∃ c ∈ R+) then
7. Convergence← True.
8. else
9. Sk+1 ← span (Sk ∪ {vk+1}), where vk+1 is a right-singular vector associated with σmin [F(zk+1)].

10. Increment k.
11. end if
12. end while
13. Output: zk+1.

5. Restarts

In the subspaceSk = span{v0, . . . , vk} of Framework 1, the vectors added lately are more relevant to the set
of optimal right-singular vectors V(z∗) of Theorem 4.3. This is because the sequence {�zk} is monotone
increasing and later points in {zk} usually represent the optimal z∗ better. This brings up a subspace-restart
idea: when the subspace Sk becomes of high dimension, erase the earlier vectors and keep the last-added
few vectors among v0, . . . , vk , possibly only vk . Thus redefine Sj := span{vk−j, . . . , vk} and restart. Such
restart strategies have already been employed in the context of large-scale eigenvalue computation based
on Krylov subspace methods (Lehoucq & Sorensen, 1996) and incorporated into modern software, for
instance ARPACK (Lehoucq et al., 1998).

The vertical searches described in Section 3 can also benefit from this restart strategy. A vertical
search, when it determines that a point is not globally rightmost, also provides a new point z0 to start
with. Then the subspace could be reset to span{v0} where v0 is a right-singular vector associated with
σmin [F(z0)].

5.1 Quality of subspace approximations

To further motivate the restart strategy and to discard poor approximations in the subspace, below we
relate the quality of a subspaceSk (specifically its proximity to v∗) with the quality of αε(FSk ) (specifically
its proximity to αε(F)). Here and throughout this subsection, Sk is a matrix whose columns form an
orthonormal basis for Sk , and z∗ is as defined in Theorem 4.3. Furthermore, let u∗, v∗ be consistent unit
left-, right-singular vectors associated with σmin [F(z∗)], that is,

F(z∗)v∗ = σmin [F(z∗)] u∗ and u∗∗F(z∗) = σmin [F(z∗)] v∗∗.

We measure the quality ofSk in terms of δ = v∗−vk∗ where vk∗ := arg minv∈Sk ,‖v‖2=1 ‖v∗−v‖2, and focus
on the error αε(F)− αε(FSk ) as δ→ 0. This issue of relating the quality of the restricted pseudospectral
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abscissa to the quality of the subspace has been addressed in the more simple matrix setting by Kressner
& Vandereycken (2014, Theorem 3.3).

Our approach has two stages. In the first stage, we establish

‖F(z∗)vk∗‖2/‖w(z∗)‖1 = ε +O
(‖δ‖2

2

)
. (5.1)

In the second stage, starting from this equality, we deduce the existence of a zk∗ ∈ C satisfying

‖F(zk∗)vk∗‖2/‖w(zk∗)‖1 = ε (5.2)

and �z∗ − �zk∗ = O(‖δ‖2
2). The last equality implies that zk∗ ∈ Λε(FSk ), meaning �zk∗ ≤ αε(FSk ). The

desired relation between the ε-pseudospectral abscissa of F and FSk follows from αε(F) − αε(FSk ) ≤�z∗ − �zk∗.
To prove equality (5.1), let us define the vector-valued function

v : R→ Rn, v(t) :=
[

v∗ + vk∗ − v∗
‖vk∗ − v∗‖2

t

]
/

∥∥∥∥v∗ + vk∗ − v∗
‖vk∗ − v∗‖2

t

∥∥∥∥
2

,

and the scalar function

μ : R→ R, μ(t) := ‖F(z∗)v(t)‖2,

which is real analytic near 0. We benefit from a Taylor expansion of μ(t) about 0 to obtain (5.1).
Specifically, since v (‖δ‖2) = v (‖vk∗ − v∗‖2) = vk∗, we have

‖F(z∗)vk∗‖2

‖w(z∗)‖1
= ‖F(z∗)v(‖δ‖2)‖2

‖w(z∗)‖1
= μ(‖δ‖2)

‖w(z∗)‖1

= μ(0)+ μ′(0)‖δ‖2 +O(‖δ‖2
2)

‖w(z∗)‖1
.

The desired equality (5.1) follows from the observations μ(0) = σmin [F(z∗)] = ε‖w(z∗)‖1 (since v(0) =
v∗), and

μ′(0) = � (u∗∗F(z∗)v′(0)
) = � (σmin [F(z∗)] v∗∗v

′(0)
) = ε‖w(z∗)‖1�

(
v∗∗v
′(0)

) = 0,

where � (v∗∗v′(0)
) = 0 due to ‖v(t)‖2

2 = 1 for all t.
To establish (5.2) for some zk∗ ∈ C such that �z∗ − �zk∗ = O(‖δ‖2

2), let us suppose that σmin [F(z∗)]
is simple, and fj(z∗) �= 0 for j = 0, . . . , m. In this case, all of the functions

σ(�z,�z) := σmin [F(�z,�z)]

‖w(�z,�z)‖1
, σ̂ (�z,�z) := ‖F(�z,�z)v∗‖2

‖w(�z,�z)‖1

and σ̃ (�z,�z) := ‖F(�z,�z)vk∗‖2

‖w(�z,�z)‖1

are continuously differentiable at (�z,�z) = (�z∗,�z∗). Target equality (5.2) can be written as
σ̃ (�zk∗,�zk∗) = ε, whereas (5.1) can be expressed as

σ̃ (�z∗,�z∗) = ε +O
(‖δ‖2

2

)
. (5.3)
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Assuming that the gradient of σ(�z,�z) does not vanish at (�z∗,�z∗), the first-order optimality conditions
imply

∇σ(�z∗,�z∗) = ∇σ̂ (�z∗,�z∗) = c · (1, 0) (5.4)

for some positive c ∈ R. But then, by continuity and the second equality in (5.4), we have

η := pT∇σ̃ (�z∗,�z∗) < 0, where p = −(1, 0). (5.5)

Employing (5.3) and due to (5.5), there exists α > 0 such that

σ̃ (�z∗ − α,�z∗) = ‖F(�z∗ − α,�z∗)vk∗‖2

‖w(�z∗ − α,�z∗)‖1
= ε.

Defining zk∗ by �zk∗ := �z∗ − α and �zk∗ := �z∗, we deduce (5.2). To quantify α = �z∗ − �zk∗, we
expand σ̃ (�z,�z) about (�z∗,�z∗) only varying �z (note that σ̃ (�z,�z∗) is real analytic with respect to
�z near �z∗). This leads to

σ̃ (�z∗ − α,�z∗) = σ̃ (�z∗,�z∗)+ ηα +O(α2) =⇒ α = O(‖δ‖2
2).

Finally, since vk∗ ∈ Sk , we have

σmin

[
FSk (zk∗)

]
‖w(zk∗)‖1

≤ ‖F(zk∗)vk∗‖2

‖w(zk∗)‖1
= ε,

meaning zk∗ ∈ Λε(FSk ). From αε(F) = �z∗ and αε(FSk ) ≥ �zk∗, we obtain αε(F) − αε(FSk ) ≤ �z∗ −
�zk∗ = α. Hence,

αε(F)− αε(FSk ) = O(‖δ‖2
2).

5.2 Overall algorithm

We apply the subspace method, specifically Framework 1 in Section 4. Initially, z0 is chosen as the
rightmost eigenvalue of F, and S0 is the associated one-dimensional subspace. The subspace method
requires the determination of a rightmost point of Λε(FSk ) for several k, each of which we achieve by the
local algorithm in Section 2. In practice, this results in convergence to a point z∗ = (z∗1, z∗2) ∈ R2 such
that C(z∗) is (up to a tolerance) on the boundary of Λε(F) with a vertical tangent line for a rather small
subspace Sk . We do not allow Sk to expand arbitrarily and restart with a one-dimensional subspace once
its dimension reaches a prescribed value. We perform the vertical search discussed in Section 3 along the
line {z ∈ C | �z = z∗1}. The vertical search is performed on the full matrix-valued function F in order
to ensure global convergence. Termination occurs if this vertical search yields ε as the smallest value of
the singular value function involved (up to a specified tolerance in practice). Otherwise, we restart the
subspace method from a global minimizer on the vertical line and with the associated one-dimensional
subspace. A detailed description is given in Algorithm 4 below.

The computational work is usually dominated by the vertical search on line 7, which is needed only
a few times in practice. Each vertical search requires the computation of the smallest singular value of
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the full matrix-valued function F(z) at several z, and this constitutes the main computational burden. On
the other hand, the local search on line 5 is performed quite a few times, but that computational cost is
quite low, since it involves small matrix-valued functions.

Algorithm 4 Computation of ε-pseudospectral abscissa for large-scale matrix-valued functions

Require: A matrix-valued function F : Ω → Cn×n analytic on Ω , a positive scalar ε ∈ R and the
maximal subspace dimension allowed kmax ∈ Z+.

1. z0 ← a rightmost eigenvalue of F and k← 0.
2. S0 ← span{v0}, where v0 is a right-singular vector associated with σmin [F(z0)].
3. Convergence← False.
4. while ¬Convergence do
5. Local search: Apply Algorithm 1 to find zk+1 = (α∗, β∗) such that C(zk+1) ∈ ∂Λε(FSk ) with a

vertical tangent line.
6. if (σ(zk+1) = ε) and (c · (1, 0) ∈ ∂σ(zk+1) ∃ c ∈ R+) then
7. Vertical search: ω∗ ← arg minω∈R σ(α∗, ω) and σ∗ ← σ(α∗, ω∗).
8. if σ∗ = ε then
9. Convergence← True.

10. else
11. z0 ← C(α∗, ω∗) and k← 0.
12. S0 ← span{v0}, where v0 is a right-singular vector associated with σmin [F(z0)].
13. end if
14. else
15. if k = kmax then
16. z0 ← zk+1 and k← 0.
17. S0 ← span{v0}, where v0 is a right-singular vector associated with σmin [F(z0)].
18. else
19. Sk+1 ← span (Sk ∪ {vk+1}), where vk+1 is a right-singular vector associated with

σmin [F(zk+1)].
20. Increment k.
21. end if
22. end if
23. end while
24. Output: zk+1.

6. Numerical examples

A practical implementation of Algorithm 4 requires several parameters, most notably the upper and lower
bounds for the second derivatives of the eigenvalue functions involved for local and vertical searches,
as well as the maximal subspace dimension. In the examples in this section and for local searches, we
set the upper bound γ equal to 2 for the standard eigenvalue problem, and 40000 for other nonlinear
eigenvalue problems. The former is an analytical upper bound, while the latter is a heuristic that works
well in practice. For the latter case, alternatively, the bounds implied by Theorems 2.2 and 2.4 could
be used. We set the lower bound γ for vertical searches equal to −4, which again is a heuristic that
works well in our experience. The maximal subspace dimension is by default chosen as n/4 for an n× n
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matrix-valued function. This excludes the delay example in Section 6.3 for which the maximal subspace
dimension is chosen as 10.

We always start the algorithm with the rightmost eigenvalue computed by MATLAB for the standard
and polynomial eigenvalue problems. This is computed by means of the QR algorithm (i.e., eig command
in MATLAB) for matrices of size up to 300 and by Arnoldi’s method (i.e., eigs command in MATLAB)
for matrices of size beyond 300. We linearize the matrix polynomials and compute the eigenvalues
of linearizations by means of the QR algorithm for small-scale problems (i.e., polyeig command in
MATLAB). For large-scale problems the current state-of-the art-CORK algorithm (Van Beeumen et al.,
2015) should be used. This algorithm fully exploits the Kronecker structure of the linearization pencils.
For other nonlinear eigenvalue problems, we expect the user to specify the rightmost eigenvalue as an
input parameter. This eigenvalue can, e.g., be computed via the software NLEIGS (Güttel et al., 2014)
for generic nonlinear eigenvalue problems or by the algorithm of Wu & Michiels (2012) for the delay
eigenvalue problem. All of the numerical experiments below are performed with MATLAB R2011a on
a Mac Pro with a quad-core Intel Xeon processor and 16 GB memory.

6.1 Standard eigenvalue problem

Algorithm 4 is especially suitable for the computation of the pseudospectral abscissa for large-scale
matrices, that is, when F(z) = A−zI for a given large matrix A and weights are given by [1∞]. The criss-
cross algorithm (Burke et al., 2003) is the most reliable choice for the computation of the pseudospectral
abscissa of a matrix at the moment, but its use is limited mainly to small- up to medium-scale matrices.
We compare Algorithm 4 with the criss-cross algorithm in this subsection.

In our numerical experiments, Algorithm 4 in practice is terminated after a vertical search, whenever
it is determined that the globally smallest value of σmin [A− (α∗ + ωi)I] over ω (for an α∗ converged by
the local search algorithm) does not differ from ε by more than a tolerance, 10−6‖A‖2 for the examples
below. The criss-cross algorithm also performs vertical searches, but they are based on extracting all
imaginary eigenvalues of 2n× 2n Hamiltonian matrices from which the intersection points of a vertical
line with the ε-pseudospectrum boundary are inferred. It terminates either if a vertical search fails to find
any intersection point or if two consecutive estimates for the ε-pseudospectral abscissa are not increasing
due to rounding errors.

We start with a random 50 × 50 matrix formed by typing randn(50) + 0.7*i*randn(50)
in MATLAB. Algorithm 4 applies the subspace iteration initially. Each subspace iteration amounts to a
local search on a small problem. When the subspace becomes eight-dimensional, it stops expanding as
the local searches on seven- and eight-dimensional subspaces return nearly identical rightmost points.
Instead, it performs a vertical search and terminates. In Fig. 1, the progress of the subspace iteration on
this example is shown for two-, four- and six-dimensional subspaces. The results of Algorithm 4 and the
criss-cross algorithm match up to 12 decimal digits.

The next three sets of examples illustrate the superiority of Algorithm 4 over the criss-cross algorithm
for medium- to large-scale matrices. All these examples can be generated using EigTool (Wright, 2014).
Each one of the three test sets consists of four matrices of size 200, 400, 800 and 1200 chosen from
a particular family. The matrices in the first set are Landau matrices arising from an integral equation
in laser theory (Landau, 1977). The matrices in the second set are Hatano–Nelson matrices, which are
tridiagonal and arise from quantum mechanics (Hatano & Nelson, 1996). The matrices in the third set
are Davies matrices originating from a spectral method discretization of an anharmonic oscillator, that
is, a second-order differential operator subject to boundary conditions in one dimension (Davies, 1999).
A comparison of running times of the algorithms is given in Table 1. In all cases, Algorithm 4 becomes
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Fig. 1. Subspace iteration on a 50 × 50 random matrix is displayed. The outermost curve represents the boundary of the ε-
pseudospectrum of this matrix for ε = 1, while each+ represents an eigenvalue. The ε-pseudospectrum for the restricted problem
FSk is shown with dotted, dashed and solid inner curves for k = 2, 4, 6, respectively. The asterisks mark the rightmost points for
these restricted problems.

Table 1 Running times for the algorithms in seconds with respect to the sizes of the matrices and the
computed pseudospectral abscissa; the running times of the criss-cross algorithm are omitted for Hatano
and Davies matrices of size 1200, since its computations take excessive time

Landau, ε = 10−0.5 200 400 800 1200

Algorithm 4 7 20 78 176
Criss-cross algorithm 7 43 223 662

αε 1.3153 1.3161 1.3161 1.3161

Hatano, ε = 1 200 400 800 1200

Algorithm 4 14 29 89 207
Criss-cross algorithm 7 46 2030

αε 4.0765 4.0903 4.0678 4.1474

Davies, ε = 105 200 400 800 1200

Algorithm 4 8 9 19 40
Criss-cross algorithm 3 41 223

αε 4.0355 · 105 4.8867 · 106 7.6266 · 107 3.8504 · 108
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superior in terms of the running times, as soon as n (the size of the matrix) is slightly larger than 200. The
gap grows quickly as n increases. Furthermore, the roughly quadratic dependence of the running time
for Algorithm 4 on the sizes of the matrices is apparent. This is due to the fact that the required smallest
eigenvalues and singular values and the corresponding eigenvectors and singular vectors are computed
by means of ARPACK (Lehoucq et al., 1998), which is based on Arnoldi’s method. The results computed
by the two algorithms differ by amounts on the order of the double machine precision in a relative sense.
More precisely, denoting the results returned by Algorithm 4 and the criss-cross algorithm by f1 and f2,
respectively, and the 2-norm of the input matrix by ‖A‖2, the quantity |f1 − f2|/‖A‖2 does not exceed
10−14.

An alternative for the local searches (Algorithm 1) in this matrix setting is the approach suggested
in Guglielmi & Overton (2011), which computes repeatedly the rightmost eigenvalues of rank-one per-
turbations of the matrix whose ε-pseudospectral abscissa is sought. We have performed comparisons of
Algorithm 1 and this approach on four families of matrices (without subspace restrictions and vertical
searches). Two of these families are composed of dense matrices, namely the Landau and Hatano matrices
of Table 1. The other two families are the Poisson matrices and Wathen matrices, which are sparse and
available through the MATLAB gallery. The Poisson matrices arise from the application of the five-point
finite difference formula to the two-dimensional Poisson equation, whereas the Wathen matrices arise
from a two-dimensional finite element discretization. In our experiments, we have observed that the par-
ticular implementation1 of the algorithm in Guglielmi & Overton (2011) that we rely on has terminated
with failure occasionally on the sparse Poisson and Wathen matrices, which we attribute to the Arnoldi
solver (i.e., eigs in MATLAB) to retrieve the rightmost eigenvalue. On successful attempts, the running
times of the two approaches together with their number of iterations are listed in Table 2. In these runs,
both algorithms are terminated when the modulus of the difference between two consecutive estimates for
a rightmost eigenvalue does not differ by more than 10−8. The particular implementation of Guglielmi &
Overton (2011) that we depend on uses the QR algorithm (i.e., calls eig) for dense matrices. This is partly
the reason for the excessive amount of time this algorithm takes on the Landau and Hatano matrices.
But beyond the running time considerations, this algorithm also requires quite a few additional iterations
compared to Algorithm 1 on these dense matrices. For the 200 × 200 Landau and Hatano matrices, the
first few iterations of Algorithm 1 and the algorithm in Guglielmi & Overton (2011) are given in Table
3. Faster convergence of Algorithm 1 is apparent from this table. It requires only 5 and 4 iterations so
that two consecutive iterations do not differ by more than 10−8 for the Landau and Hatano matrices,
respectively. (Note that the row of k = 0 lists the initial estimates in the table.) On the other hand, the
algorithm in Guglielmi & Overton (2011) performs 46 and 24 iterations to satisfy the same criterion. On
the sparse Poisson and Wathen matrices, the two algorithms exhibit similar convergence behavior, and
both require only a few iterations. For matrices on the order of ten thousands in Table 1, the algorithm in
Guglielmi & Overton (2011) runs faster than Algorithm 1. We attribute this to the fact that the estimation
of a smallest singular value based on the Arnoldi iteration requires computation of a sparse Cholesky
or an LU factorization followed by sparse forward and back substitutions, which may not be needed to
compute a rightmost eigenvalue. But this comes at the expense of reliability. The particular implemen-
tation of Guglielmi & Overton (2011) that we use terminates with failure in most of the attempts on the
Poisson and Wathen matrices.

1 PSAPSR version 1.2 that is available at http://www.cs.nyu.edu/overton/software/psapsr/index.html.
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Table 2 Comparison of the running times and number of iterations of Algorithm 1 and the algorithm in
Guglielmi & Overton (2011) on four families of matrices: Landau and Hatano matrices are dense, whereas
Poisson and Wathen matrices are sparse. In each table in the second and third rows, the numbers separated
by a comma correspond to the running time in seconds and the number of iterations, respectively. These
entries are omitted for the algorithm in Guglielmi & Overton (2011) and for the 800× 800, 1200× 1200
Landau matrices, as well as for the 1200 × 1200 Hatano matrices, since the computations take an
excessive amount of time

Landau, ε = 10−0.5 200 400 800 1200

Algorithm 1 0.8, 5 2.3, 5 10.7, 5 21.2, 5
Algorithm in Guglielmi & Overton (2011) 25.5, 46 509, 176

Hatano, ε = 1 200 400 800 1200

Algorithm 1 0.5, 4 0.7, 4 2, 4 4.4, 4
Algorithm in Guglielmi & Overton (2011) 11, 24 57.3, 29 225.6, 22

Poisson, ε = 102 225 900 2500 10000 40000

Algorithm 1 0.07, 2 0.4, 2 1, 2 5.4, 2 123, 2
Algorithm in Guglielmi & Overton (2011) 0.16, 2 1, 2 1.8, 2 8.5, 2 77.5, 2

Wathen, ε = 102 341 560 1281 2821 14981

Algorithm 1 0.1, 2 0.3, 2 0.4, 2 0.9, 2 6.3, 2
Algorithm in Guglielmi & Overton (2011) 0.1, 2 0.5, 2 0.6, 2 1.3, 2 2.7, 2

Table 3 A comparison of the iterations of Algorithm 1 and the algorithm in Guglielmi & Overton
(2011) on two matrices: (left) first five iterations of these algorithms on the 200× 200 Landau matrix for
ε = 10−0.5. For this example αε(A) = 1.3153 rounded to four decimal digits; (right) first four and five
iterations of Algorithm 1 and the algorithm in Guglielmi & Overton (2011) on the 200 × 200 Hatano
matrix for ε = 1. Algorithm 1 converges after 5 iterations. In this case, αε(A) = 4.0765 rounded to four
decimal digits

Algorithm in
Guglielmi & Overton

k Algorithm 1 (2011)

0 0.998463500946449 0.998463500946449
1 1.314691266963286 1.314183947855148
2 1.315321099396864 1.314549337187003
3 1.315321120654854 1.314742547970619
4 1.315321120661175 1.314870338002996
5 1.315321120661177 1.314963416776238

Algorithm in
Guglielmi & Overton

k Algorithm 1 (2011)

0 2.975503186571108 2.975503186571121
1 3.975503186571105 3.958394806886049
2 4.076353694550083 4.044979289335425
3 4.076461835403093 4.065624227604959
4 4.076461835511952 4.072484100899472
5 4.074749026199803
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6.2 Polynomial eigenvalue problem

In this subsection, we experiment with several polynomial eigenvalue problems available in the collection
Betcke et al. (2010). In all of these experiments, Algorithm 4 is terminated in practice whenever a vertical
search determines that the globally smallest value of σmin [F(α∗, ω)] /‖w(α∗, ω)‖1 over ω does not differ
from ε by more than 10−6‖Am‖2, where Am denotes the leading coefficient matrix of the matrix polynomial
F(λ) := ∑m

j=0 λjAj whose ε-pseudospectral abscissa is sought. Furthermore, in all experiments in this
subsection, all weights are set equal to 1, unless otherwise stated. All of the plots of the pseudospectra
are generated by computing the singular value function σmin [P(z)] /‖w(z)‖1 on a grid.

6.2.1 Wing example. The first one arises from the analysis of oscillations of a wing of an airplane,
leading to a 3× 3 quadratic eigenvalue problem Q(λ) = A0 + λA1 + λ2A2 where

A0 =
⎡⎣ 121 18.9 15.9

0 2.7 0.145
11.9 3.64 15.5

⎤⎦, A1 =
⎡⎣ 7.66 2.45 2.1

0.23 1.04 0.223
0.60 0.756 0.658

⎤⎦, A2 =
⎡⎣ 17.6 1.28 2.89

1.28 0.824 0.413
2.89 0.413 0.725

⎤⎦.

The progress of Algorithm 4 on this example with ε = 10−0.8 is illustrated in Fig. 2. The algorithm
starts with a rightmost eigenvalue zr = 0.0947+ 2.2529i. However, this eigenvalue is considerably less
sensitive as compared to the eigenvalues −0.8848 ± 8.4415i. The first few iterations yield estimates in
the component of Λε(Q) containing zr . When the rightmost point in this component is obtained, a vertical
search is performed, and the algorithm jumps into the component of the eigenvalue −0.8848− 8.4415i.
A few more subspace iterations result in convergence to a rightmost point globally. The computed value
αε(Q) = 9.25817665382 matches the result reported in Michiels & Guglielmi (2012).

6.2.2 Butterfly example. We next experiment on the butterfly example in Betcke et al. (2010). This
involves a 64×64 quartic polynomial P(λ) = B0+λB1+λ2B2+λ3B3+λ4B4 for which the computation
of αε(P) appears notoriously difficult. A particular application of Algorithm 4 for the computation of
αε(P) for ε = 0.08 is illustrated in Fig. 3. The algorithm converges to (nonglobal) local solutions twice.
It escapes from these local solutions by means of vertical searches. Consequently, it generates iterates
with imaginary parts about−2. But slow convergence occurs, and our numerical implementation applies
another vertical search. This is an artifact of the numerical implementation; this vertical search is not
essential for convergence to a globally rightmost point, as the pseudospectra is symmetric with respect
to the real axis. But it speeds up the convergence. This leads to iterates with imaginary parts about 2 and
eventually termination with αε(P) = 1.3858189142.

It has been proven in Kressner & Vandereycken (2014) that the subspace approach for the com-
putation of a pseudospectral abscissa of a matrix converges superlinearly with respect to the subspace
dimension. Even faster quadratic convergence has been reported in practice in the same paper. In the
more general nonlinear eigenvalue setting, we still observe quadratic convergence. For instance, for the
butterfly example above, the first five iterations of the subspace approach before the first vertical search
are given on the left in Table 4, where quadratic convergence is apparent.

To illustrate the effect of the weights, the algorithm is applied to the butterfly example for ε = 0.2
with weights [1 1 1 1 1], [1 1 1 1∞], [1 1 1∞∞] and [1 1∞∞∞] . The iterates generated on the
associated ε-pseudospectrum for each of these four cases are provided in Fig. 4. The computed αε(P)

are 3.6758307326, 1.4144528011, 1.2006081257 and 1.1221784200, respectively. The decrease in the
ε-pseudospectral abscissa is dramatic when perturbations of the leading coefficient are not allowed. The
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Fig. 2. The progress of the algorithm on the wing example Q for ε = 10−0.8 is shown. The eigenvalues are marked with dots,
and the iterates of the algorithm are marked with asterisks. The outermost solid curve corresponds to the boundary of Λε(Q) for
ε = 10−0.8, whereas the inner dotted curves represent the boundary of this ε-pseudospectrum when the domain of the map v → Qv
is restricted to one- and two-dimensional subspaces.

Fig. 3. The algorithm is depicted on the butterfly example with ε = 0.08. Once again, the eigenvalues and the iterates of the
algorithm are marked with dots and asterisks, respectively. The outermost solid curve corresponds to the boundary of the ε-
pseudospectrum. The dotted curve and dashed dotted curve represent the ε-pseudospectrum when the domain is restricted to a
one-dimensional subspace and a three-dimensional subspace just a few iterations before termination.
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Table 4 The real parts of the rightmost points are listed with respect to the subspace dimension k for
the following examples: (left) the butterfly example illustrated in Fig. 3 before the first vertical search
with all weights equal to 1 and ε = 0.08; (right) the delay example of Fig. 5 after the first vertical search
with weights [∞ 1 1 1] and ε = 0.45

k αε(PSk )

1 1.13113137749520
2 1.17557525555857
3 1.17810581840297
4 1.17824505975687
5 1.17824509591110
6 1.17824509591110

k αε(DSk )

1 14.77293966129789
2 15.54331045219255
3 15.58945602178569
4 15.58946152761596
5 15.58946153015292
6 15.58946153015296

algorithm does not require any vertical searches on the top-left figure, and it performs vertical searches
on the other three figures to avoid locally rightmost points.

6.2.3 Two-dimensional acoustic wave example. This concerns a quadratic matrix polynomial W(λ) =
K0+λK1+λ2K2 arising from a finite element discretization of a two-dimensional harmonic wave equation
over the unit square [0, 1] × [0, 1]. The size of the matrix polynomial W depends on the coarseness of
the finite element grid. Running times of Algorithm 4 to compute αε(W) for ε = 0.01 with respect to the
size of W are listed in Table 5.

The majority of the running time is consumed by the vertical searches for the examples in Table 5.
Algorithm 3 without the vertical searches is applicable to large-scale matrix polynomials. This is illus-
trated in Table 6 on the matrix polynomials of size 1100× 1100, 2100× 2100 and 4200× 4200 arising
from the acoustic wave equation. Here, only the subspace approach combined with the local searches
is applied, in a way such that it terminates when the two consecutive estimates for the ε-pseudospectral
abscissa differ by less than 10−12. Thus, the computed values for αε(W) can possibly correspond to the
real parts of points in Λε(W) that are locally rightmost. The rightmost eigenvalues are computed a priori,
so the time consumed for their computation is not included in the overall running time. The running
times in Table 6 are remarkable; given this rightmost eigenvalue, the subspace approach requires less
than a minute to compute a locally rightmost point in Λε(W). The majority of the running time for
the subspace approach is taken by the smallest singular value computations on the full matrix polyno-
mial. Recall that the right-singular vectors associated with these singular values are needed to form the
subspaces.

6.3 Delay eigenvalue problem

We test Algorithm 4 on the following delay eigenvalue problem with weights [∞ 1 1 1]:

D(λ) = λI − D0 − D1e−λ − D2e−3λ. (6.1)
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Fig. 4. The algorithm on the butterfly example with ε = 0.2 is depicted for various choices of weights. The eigenvalues and the
iterates are marked with dots and asterisks, respectively. The solid curve is the boundary of the ε-pseudospectrum. Weights are as
follows: (top left) [1 1 1 1 1]; (top right) [1 1 1 1∞]; (bottom left) [1 1 1∞∞]; (bottom right) [1 1∞∞∞].

Table 5 Running time for Algorithm 4 in seconds on the two-dimensional acoustic wave equation with
respect to the size of the quadratic matrix polynomial involved, and the computed pseudospectral abscissa

Two-dimensional acoustic wave, ε = 0.01 110 210 420

Running time 11 138 584
αε 4.99778 6.95044 1.00718 · 101

The coefficient matrices D0, D1, D2 are obtained by typing randn(100) + 1.2*randn(100)*i,
randn(100) and gallery(’poisson’,10) in MATLAB.2 Thus D0 and D1 are complex and real

2 The precise data is available on the web at http://home.ku.edu.tr/∼emengi/software/delay.mat.
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Table 6 Running time for Algorithm 3 (without the vertical searches) in seconds on the two-dimensional
acoustic wave equation with respect to the size of the quadratic matrix polynomial involved, the real part
of the rightmost eigenvalue α, and computed pseudospectral abscissa αε

Two-dimensional acoustic wave, ε = 0.0001 1100 2100 4200

Running time 3 7 57
α 3.50140 · 102 6.68451 · 102 1.33690 · 103

αε 3.50631 · 102 6.70238 · 102 1.34408 · 103

Fig. 5. The progress of the algorithm on delay example (6.1) for ε = 0.45 is shown, when initiating at the origin. The iterates
are marked with asterisks, the eigenvalues are indicated by dots, whereas the solid curve corresponds to the boundary of the
ε-pseudospectrum. The dashed vertical line represents the points with real part equal to the computed ε-pseudospectral abscissa.

random matrices, respectively, whereas D2 comes from the five-point finite difference discretization of
the two-dimensional Poisson equation. For ε = 0.45 the pseudospectrum Λε(D) is shown in Fig. 5, for
which the boundary is generated by calculating σmin(D(z))/‖w(z)‖1 on a grid. The rightmost eigenvalue
is given by λ = 16.3300−1.9812i. Initiating Algorithm 4 with this value, only one local search is needed
to locate the globally rightmost point, leading to αε(D) = 17.1899477706.

A nice, didactic illustration of the interplay between the two components of Algorithm 4 (searching
for a locally rightmost point and switching by vertical searches) is obtained by initializing the algorithm
with the origin instead. Then the algorithm ends up at locally rightmost points twice; see Fig. 5. Each time
this happens, a vertical search provides a better estimate strictly inside the ε-pseudospectrum and well
away from the boundary. All together 53 subspace iterations are needed to retrieve the pseudospectral
abscissa. The subspace dimension is never allowed to exceed 10; whenever the subspace dimension
becomes 10, it is reset to a one-dimensional subspace based on the latest iterate. The algorithm concludes
with convergence after an eventual vertical search, when it is found that the globally smallest value of
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Table 7 The number of iterations during the first and last vertical searches, as well as the total running
time in seconds, with respect to γ for the delay example of Section 6.3

γ −4 −8 −16 −32 −100 −200

First vertical search 58 87 113 171 285 404
Last vertical search 46 72 103 144 244 342
Total running time (in seconds) 47.2 48.6 51.0 54.5 65.4 80.4

Table 8 The number of iterations of a local search when the subspace dimension is nine, as well as the
total running time in seconds, with respect to γh for the delay example

γh 4× 105 4× 106 4× 107 4× 108

Number of iterations 330 1031 3200 8893
Total running time (in seconds) 47.2 55.8 113.7 154.9

σmin [D(α∗, ω)] /‖w(α∗, ω)‖1 for fixed α∗ = 17.1899477706 over all ω does not differ from ε by more than
10−6‖D2‖2. The iterates of the subspace approach on this example after the first vertical search are listed on
the right-hand side of Table 4, where we again observe a quadratic rate of convergence with respect to the
subspace dimension. Note that by starting from an arbitrary point λ0 satisfying σmin [D(λ0)] < ε‖w(λ0)‖1

does not by itself guarantee to find a globally rightmost point of the pseudospectrum, since, for instance,
the possibility of the existence of an isolated component of the pseudospectrum to the right of the dashed
line in Fig. 5 is not excluded. Such a situation is avoided by initiating the algorithm with the rightmost
eigenvalue.

In this example, the global lower bound γ for the second derivatives of the singular value function
minimized during the vertical searches is set equal to −4. As this lower bound is chosen smaller, the
number of iterations required by the vertical searches to satisfy the prescribed error tolerance 10−6‖D2‖2

increases. But the increase in the number of iterations is typically sublinear with respect to γ . This is
illustrated in Table 7 for the first and the last vertical searches for the particular delay example. The
total running times in seconds with respect to γ are also listed in this table. The total running times
increase even more slowly than the number of iterations during the vertical searches. This is due to the
computations required by the other ingredients of the algorithm. For all the values of γ in the table, the
retrieved values of the ε-pseudospectral abscissa are all the same up to at least prescribed accuracy.

The dependence of the number of iterations of a local search on the upper bound γh is also sublinear in
our experience. This is demonstrated in Table 8, specifically for the delay example and for the local search
performed with nine-dimensional subspace restrictions right before the first vertical search. The growth
of the total running time with respect to γh also listed in the same table is again slower than the growth
of the number of iterations. Employing Theorem 2.2, one can draw the conclusion that γh = 4 × 107

leads to an analytical upper bound. However, the computed ε-pseudospectral abscissa for the values of γh

used in the table are all the same up to at least prescribed accuracy. For a nonlinear eigenvalue problem,
the bounds γ = −4 in vertical searches and γh = 40000 in local searches yield accurate results in our
experiments on a wide range of examples.
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7. Software

Algorithm 4 is implemented in MATLAB. This MATLAB software is available on the web publicly.3 For
a nonpolynomial nonlinear eigenvalue problem, the user is expected to write down a routine calculating
the functions fj(z) as in (1.2) and their first derivatives at a given z ∈ C. The user must provide the name
of this routine and a rightmost eigenvalue to the software as input parameters.

8. Conclusion

An algorithm is proposed for the computation of the ε-pseudospectral abscissa of an analytic matrix-
valued function F(λ) depending on one complex parameter. The algorithm is capable of handling
large-scale problems. This is made possible by an adaptation of the subspace iteration (Kressner &
Vandereycken, 2014) for the nonlinear eigenvalue problem setting. Each subspace iteration involves the
computation of the ε-pseudospectral abscissa when the domain of the map v → F(λ)v is restricted to
a small subspace. This computation is realized locally, but in a robust way against nonsmoothness, by
adapting the support-based algorithm of Mengi (2016) for optimization subject to eigenvalue constraints.
Repeated applications of the subspace iteration result in a point on the boundary of the ε-pseudospectrum
with a vertical tangent line. Vertical searches are performed to check whether these converged points
are globally rightmost in the ε-pseudospectrum. These vertical searches are realized by means of the
support-based algorithm of Mengi et al. (2014), which determines the globally smallest value of a pre-
scribed eigenvalue of a Hermitian and analytic matrix-valued function. They depend on the availability
of a global lower bound γ for the second derivative of a certain singular value function. Assigning a large,
negative value to γ works robustly in practice. A restarting strategy for the subspaces further enhances
the efficiency of the algorithm.

The algorithm is both globally convergent and well suited for large-scale problems. The accompanying
software that is publicly available aims for large-scale standard, polynomial and more general nonlinear
eigenvalue problems.
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